SMOOTHING DECISION BOUNDARIES TO AVOID OVERFITTING IN NEURAL NETWORK TRAINING

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lessons in Neural Network Training: Overfitting

For many reasons, neural networks have become very popular AI machine learning models. Two of the most important aspects of machine learning models are how well the model generalizes to unseen data, and how well the model scales with problem complexity. Using a controlled task with known optimal training error, we investigate the convergence of the backpropagation (BP) algorithm. We find that t...

متن کامل

Using Validation to Avoid Overfitting in Boosting Using Validation to Avoid Overfitting in Boosting

AdaBoost is a well known, effective technique for increasing the accuracy of learning algorithms. However, it has the potential to overfit the training set because it focuses on misclassified examples, which may be noisy. We demonstrate that overfitting in AdaBoost can be alleviated in a time-efficient manner using a combination of dagging and validation sets. The training set is partitioned in...

متن کامل

A conjugate gradient based method for Decision Neural Network training

Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...

متن کامل

An Improvement of AdaBoost to Avoid Overfitting

Recent work has shown that combining multiple versions of weak classiiers such as decision trees or neural networks results in reduced test set error. To study this in greater detail, we analyze the asymptotic behavior of AdaBoost. The theoretical analysis establishes the relation between the distribution of margins of the training examples and the generated voting classiication rule. The paper...

متن کامل

Ensemble strategies to build neural network to facilitate decision making

There are three major strategies to form neural network ensembles. The simplest one is the Cross Validation strategy in which all members are trained with the same training data. Bagging and boosting strategies pro-duce perturbed sample from training data. This paper provides an ideal model based on two important factors: activation function and number of neurons in the hidden layer and based u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neural Network World

سال: 2011

ISSN: 1210-0552,2336-4335

DOI: 10.14311/nnw.2011.21.019